Willkommen bei VitaminWiki

Acetyl-L-Carnitin

Bild: Acetyl-L-Carnitin im Nervensystem
Acetyl-L-Carnitin verbessert die Reizweiterleitung der Nervenzellen im Gehirn (VitaminWiki)

Erhöht die Energiegewinnung und unterstützt das Nervensystem

Anhebung des Energiestoffwechsels: Der körpereigene Stoff Acetyl-L-Carnitin erhöht die Energiebildung in den so genannten Mitochondrien, den Energie bildenden „Kraftwerken“ der Zellen. Acetyl-L-Carnitin (ACL) sorgt dafür, dass den Zellen ausreichend Energie für alle Zellfunktionen zur Verfügung steht. Besonders relevant ist dies für Zellsysteme des Gehirns, des Nervensystems sowie des Herzmuskels. Der gesteigerte Energiestoffwechsel der Nervenzellen wirkt dabei altersbedingten Abbauprozessen der Zellen entgegen und fördert die geistige Leistungsfähigkeit wie das Gedächtnis- und Konzentrationsvermögen bis ins hohe Alter.

Verbesserung der Nervenfunktionen: Acetyl-L-Carnitin steigert die Erregbarkeit („Rezeptorsensibilität“) der Nerven für die Botenstoffe Serotonin und Acetylcholin (Neurotransmitter) und vermindert damit die mit Alterungsprozessen stattfindende Desensibilisierung der Nervenrezeptoren. Hierdurch werden die Prozesse der Degeneration, dem Funktionsverlust der Zellen, gehemmt. Acetyl-L-Carnitin wirkt sich über diesen Mechanismus positiv auf die Entstehung und das Fortschreiten neurodegenerativer Erkrankungen wie der diabetischen Neuropathie, der Altersdepression oder der Alzheimer-Erkrankung aus.

Weitere wissenschaftliche Veröffentlichungen: 1. Bonavita E.: Study of the efficacy and tolerability of L-acetyl-carnitine therapy in the senile brain; Int J Clin Pharmacol Ther Toxicol 24.9 (1986). 2. Marconi C. et al.: Effects of L-carnitine loading on the aerobic and anaerobic performance of endurance athletes; Europ. J. Appl. Physiol. 54, 131-135 (1985). 3. Spagnoli A. et al.: Acetyl-L-carnitine treatment in alzheimer`s disease, Neurology; 41.11 (1991). 4. Wilson A. et al.: Delayed acetyl-L-carnitine administration and its effect on sensory neuronal rescue after peripheral nerve injury. Journal of Plastic Reconstructive & Aesthetic Surgery 60 (2): 114– (2007). 5. Samir P. et al.: Acetyl-l-carnitine ameliorates mitochondrial dysfunction following contusion spinal cord injury. Journal of Neurochemistry 114 (1): 291–301 (2010). 6. Beal M.: Bioenergetic approaches for neuroprotection in Parkinson’s disease. Annals of Neurology 53 (Suppl 3): S39–47; discussion S47–8 (2003).

Chlorella

Grünalge mit Schutzwirkung

Mikroalge zur Entgiftung: Die Chlorella-Alge (Chlorella pyrenoidosa) besitzt durch ihren hohen Gehalt an bestimmten Eiweißen und Biomolekülen (u.a. Sporopollenin) die Fähigkeit, toxische Substanzen wie Pestizide und Schwermetalle wie Cadmium, Blei und insbesondere Amalgam zu binden und auszuleiten. Darüber hinaus erhöht Chlorella den Glutahionspiegel. Glutathion fördert die Entgiftungsleistung der Leber und ist selbst aufgrund seiner Affinität zu Schwermetallen in der Lage, anorganische und organische Quecksilberverbindungen zu binden. Das in hoher Konzentration enthaltene Chlorophyll steigert zudem den Sauerstoffgehalt im Blut und verbessert das Körpermilieu.

Mariner Antioxidant: Die Chlorella-Alge besitzt außerdem eine hohe Konzentration an Antioxidantien, vorrangig Polyphenole und Carotinoide wie Beta-Carotin, Lutein und Zeaxanthin. Diese reduzieren oxidative Schäden sowie den Ausstoß der Körperzellen an so genanntem Stickstoffmonoxid (NO). NO löst normaler Weise Entzündungsprozesse aus, die zu oxidativen Schäden, der so genannten Lipidoxidation, führen. Chlorella senkt den NO-Ausstoß der Zellen. Hierdurch können sich antioxidative Enzymsysteme, vor allem die Glutathionperoxidase, die Superoxidismutase und die Katalase stärker entwickeln.

Weitere wissenschaftliche Veröffentlichungen: 1. Konishi, F. et al.: Antitumor effect enduced by a hot water extract of Chlorella vulgaris (CE): Resistance to Meth-A tumor growth mediated by CE-induced polymorphonuclear leukocytes. Cancer Immunol. Immunother 19:73-78, (1985). 2. Kojima, M. et al.: A New Chlorella Polysaccharide and Its Accelerating Effect an the Phagocytic Activity of the Reticuloendothelial System. Recent Adv. R.E.S. Res. 13:11 (1973). 3. Kobayashi, S.: Influence of chlorella extract an reticuloendothelial phagocytosis of rats. Health and Industry Newsletter. Agricultural Chemical Convention (1978). 4. Konishi F. et al.: Antitumor effect induced by a hot water extract of Chlorella vulgaris (CE): resistance to Meth-A tumor growth mediated by CE-induced polymorphonuclear leukocytes. Cancer Immunol Immunother 19(2):73-78 (1985). 5. Matsueda, S. et al.: Anti-tumor effect by oral administration of Chlorella extract. PCM-4. Gan To-Kagaku-Ryoho, 10(3), 781-5 (1983). 7. Tanka K. et al.: Oral administration of a unicellular green algae, Chlorealla vulgaris, prevents stress-induced ulcer. Planta Medica 1997; 63:465-466 (1997). 8. Yamaguchi, N. et al.: Immunomodulation by single cellular algae (Chlorella pyrenoidosa) and anti-tumor activities for tumor-bearing mice. Third International Congress of Developmental and Comparative Immunology, Reims, France, July 7-13 (1985). 9. Lee, SH et al.: Six-week supplementation with Chlorella has favorable impact on antioxidant status in Korean male smokers., Nutrition, pp. 175-83 (2010).

Pantothensäure (Vitamin B5)

Anti-Stress-Vitamin für agile Nerven und gesunde Haut

Sorgt für regen Nervenbotenstoffwechsel: Wie die meisten B-Vitamine ist Pantothensäure an  unterschiedlichsten Vorgängen im Stoffwechsel essentiell beteiligt. Speziell bei der Reizweiterleitung der Nervenzellen erfüllt Pantothensäure eine unersetzliche Funktion. Mit weiteren Vitaminen des B-Komplexes im Verbund steuert es die Biosynthese von Nervenbotenstoffen (Neurotransmittern) wie Acetylcholin, das die Reizübertragung zwischen Nerven- und Muskelzellen und zwischen Neuronen sicherstellt. Die Anwendung von Pantothensäure hat sich insbesondere bei kognitiven Leistungsschwächen wie Konzentrations-, Gedächtnis-, Lern- und Verhaltensstörungen bei Kindern sowie bei erhöhter Stressbelastung und Erschöpfungszuständen bewährt.

Regeneration von Haut und Schleimhaut: Im Zellstoffwechsel ist Pantothensäure für die Regeneration und den Aufbau von Zellen und Gewebe im Besonderen von Haut und Schleimhaut zuständig. Der Prozess der Wundheilung, auch bei Verbrennungen und größerem Gewebeverlust, sowie die Regeneration gereizter Schleimhäute oder bei Schleimhautläsionen sind maßgeblich von ausreichend vorhandenem Vitamin B5 abhängig. Zu den vielen Aufgaben des Vitamins zählen zudem die Sicherstellung des Energie- und Fettstoffwechsels, die Bildung von Hämoglobin, Steroidhormonen, Aminosäuren, Gallensäure sowie Haar-, Haut und Blutpigmenten, die Immunstärkung sowie seine medizinische Anwendung u.a. bei Arthritis, Hyperlipidämien, Bindehautreizungen und dem Burning-Feet-Syndrom.

Weitere wissenschaftliche Veröffentlichungen: 1. Aprahamian M. et al.: Effects of supplemental pantothenic acid on wound healing: experimental study in rabbit. Am J Clin Nutr. 1985;41(3):578-89. 2. Arsenio L. et al.: Effectiveness of long-term treatment with pantethine in patients with dyslipidemia. Clin Ther. 1986;8:537–545. 3. Bertolini S. et al.: Lipoprotein changes induced by pantethine in hyperlipoproteinemic patients: adults and children. Int J Clin Pharmacol Ther Toxicol.1986;24:630–637. 4. Haslam R. et al.: Effects of megavitamin therapy on children with attention deficit disorders. Pediatrics 1984;74:103-1. 5. Lacroix B. et al.: Role of pantothenic and ascorbic acid in wound healing processes: in vitro study on fibroblasts. Int J Vitam Nutr Res. 1988;58(4):407-413. 6. Leung L (1995): Pantothenic acid deficiency as the pathogenesis of acne vulgaris. Med Hypotheses 44 (6): 490-2. PMID 7476595. 7. McCarty M.: Inhibition of acetyl-CoA carboxylase by cystamine may mediate the hypotriglyceridemic activity of pantethine. Med Hypotheses. 2001;56(3):314-317. 8. Meyer N. et al.: Nutrient support of the healing wound. New Horizons. 1994;2(2):202-214.

Soja-Protein

Optimale Eiweißquelle plus schützender Phytoöstrogene

Bausteine zur Eiweißbildung: Soja-Protein weist mit einem Wert von 85 eine für den menschlichen Organismus vergleichbar hohe so genannte „biologische Eiweiß-Wertigkeit“ auf. Auch als orale Bioverfügbarkeit von Eiweiß bezeichnet, ist die Eiweiß-Wertigkeit ein Messparameter, mit dem der physiologische Wert einer Proteinquelle für den menschlichen Organismus charakterisiert wird. Soja liefert auch rein vegetarisch lebenden Menschen alle wichtigen und essentiellen Aminosäuren. Als Besonderheit liefert Soja-Eiweiß bemerkenswerte Mengen an L-Glutamin, eine Aminosäure, die über die übliche Ernährungsweise in geringen Mengen aufgenommen wird und daher als limitierende (begrenzende) Aminosäure für die körpereigene Eiweißsynthese, zum Aufbau von Zellen, Geweben, Muskelmasse, Hormonen, Regler-  und Immunstoffen, gilt.

Soja-Isoflavone bieten Schutz für Knochen und Herz-Kreislauf-System: Die in Soja-Eiweiß enthaltenen Isoflavone Genistein und Daidzein stellen die für den Menschen wichtigsten Phytoöstrogene dar. Phytoöstrogene sind sekundäre Pflanzenstoffe, deren hormonähnliche Oberflächenstruktur den weiblichen Östrogenen gleicht, die daher deren Zellrezeptoren besetzen und damit ein breites Spektrum an positiv regulierenden Wirkungen auf das Hormon- sowie Herz-Kreislauf-System und Knochenstrukturen ausüben. In verschiedenen placebokontrollierten Studien konnten u.a. folgende Wirkungen für Soja-Isoflavone nachgewiesen werden: Mehrfacher Herz-Kreislauf-Schutz einschließlich Senkung der Lipidwerte (LDL-Cholesterin, Triglyceride), Erhalt/Erhöhung der Knochendichte (Osteoporose-Prophylaxe), antioxidative Wirksamkeit sowie positiver Einfluss auf die Flexibilität der Blutgefäße insbesondere bei Frauen in der Prä- und Postmenopause. Soja-Isoflavone haben darüber hinaus seit Jahren einen festen Stellenwert zur sanften, effektiven Linderung von Wechseljahres- und Menstruationsbeschwerden.

Weitere wissenschaftliche Veröffentlichungen: 1. Adlerereutz H.: Soy isoflavones: A safety review. Nutrition Review. 2003;61:1–33. 2. Potter S.: Overview of proposed mechanisms for the hypocholesterolemic effect of soy. J Nutr 1995;125:606S–11S. 3. Anderson J. et al.: Meta-analysis of the effects of soy protein intake on serum lipids. N Engl J Med 1995;333:276–82. 4. Arliss R. et al.: Do soy isoflavones lower cholesterol, inhibit atherosclerosis, and play a role in cancer prevention? Holistic Nurse Practitioner. 2002;16(5):40–48. 5. Bhathena S. et al.: Beneficial role of dietary phytoestrogens in obesity and diabetes. American Journal of Clinical Nutrition. 2002;76:1191–1201. 6. Carroll K.: Review of clinical studies on cholesterol-lowering response to soy protein. J Am Diet Assoc 1991;91:820–7. 7. FDA Talk Paper.: FDA Approves New Health Claim for Soy Protein and Coronary Heart Disease. Accessed May 6, 2005. 8. Hasler C.: The cardiovascular effects of soy products. Cardiovascular Nursing. 2002;16(4):50–63. 9. Tikkanen M. et al.: Effect of soybean phytoestrogen intake on low density lipoprotein oxidation resistance. Proc Natl Acad Sci USA 1998;95:3106–10.