Willkommen bei VitaminWiki

Acetyl-L-Carnitin

Bild: Acetyl-L-Carnitin im Nervensystem
Acetyl-L-Carnitin verbessert die Reizweiterleitung der Nervenzellen im Gehirn (VitaminWiki)

Erhöht die Energiegewinnung und unterstützt das Nervensystem

Anhebung des Energiestoffwechsels: Der körpereigene Stoff Acetyl-L-Carnitin erhöht die Energiebildung in den so genannten Mitochondrien, den Energie bildenden „Kraftwerken“ der Zellen. Acetyl-L-Carnitin (ACL) sorgt dafür, dass den Zellen ausreichend Energie für alle Zellfunktionen zur Verfügung steht. Besonders relevant ist dies für Zellsysteme des Gehirns, des Nervensystems sowie des Herzmuskels. Der gesteigerte Energiestoffwechsel der Nervenzellen wirkt dabei altersbedingten Abbauprozessen der Zellen entgegen und fördert die geistige Leistungsfähigkeit wie das Gedächtnis- und Konzentrationsvermögen bis ins hohe Alter.

Verbesserung der Nervenfunktionen: Acetyl-L-Carnitin steigert die Erregbarkeit („Rezeptorsensibilität“) der Nerven für die Botenstoffe Serotonin und Acetylcholin (Neurotransmitter) und vermindert damit die mit Alterungsprozessen stattfindende Desensibilisierung der Nervenrezeptoren. Hierdurch werden die Prozesse der Degeneration, dem Funktionsverlust der Zellen, gehemmt. Acetyl-L-Carnitin wirkt sich über diesen Mechanismus positiv auf die Entstehung und das Fortschreiten neurodegenerativer Erkrankungen wie der diabetischen Neuropathie, der Altersdepression oder der Alzheimer-Erkrankung aus.

Weitere wissenschaftliche Veröffentlichungen: 1. Bonavita E.: Study of the efficacy and tolerability of L-acetyl-carnitine therapy in the senile brain; Int J Clin Pharmacol Ther Toxicol 24.9 (1986). 2. Marconi C. et al.: Effects of L-carnitine loading on the aerobic and anaerobic performance of endurance athletes; Europ. J. Appl. Physiol. 54, 131-135 (1985). 3. Spagnoli A. et al.: Acetyl-L-carnitine treatment in alzheimer`s disease, Neurology; 41.11 (1991). 4. Wilson A. et al.: Delayed acetyl-L-carnitine administration and its effect on sensory neuronal rescue after peripheral nerve injury. Journal of Plastic Reconstructive & Aesthetic Surgery 60 (2): 114– (2007). 5. Samir P. et al.: Acetyl-l-carnitine ameliorates mitochondrial dysfunction following contusion spinal cord injury. Journal of Neurochemistry 114 (1): 291–301 (2010). 6. Beal M.: Bioenergetic approaches for neuroprotection in Parkinson’s disease. Annals of Neurology 53 (Suppl 3): S39–47; discussion S47–8 (2003).

Alpha-Liponsäure

Starker Antioxidant und Schutzengel im Nervensystem

Multi-Antioxidant: Die Alpha-Liponsäure zählt zu den wirksamsten Antioxidantien im menschlichen Organismus. Die Besonderheit: Ihre Struktur erlaubt es der Alpha-Liponsäure, sowohl in fettlöslichen Zellmembranen als auch den wasserlöslichen Geweben antioxidativ wirksam zu sein und so Zellwände und Zellorganellen (Funktionseinheiten) vor freien Radikalen zu schützen. Darüber hinaus ist die Alpha-Liponsäure in der Lage, andere Antioxidantien wie Vitamin E, Glutathion und Vitamin C zu regenerieren und damit die antioxidative Gesamtwirkung zu verstärken.

Nervenschutzstoff: Die Alpha-Liponsäure wirkt neuroprotektiv (Nerven schützend). Sie erhöht die Nervenleitgeschwindigkeit und verbessert die Blutzirkulation der Nervenzellen und deren Versorgung mit Sauerstoff und Nährstoffen. Gute Erfolge werden mit der Alpha-Liponsäure daher in der Regel bei allen Erkrankungen erzielt, die mit Nervenschädigungen einhergehen, wie z. B. den diabetischen Polyneuropathien oder Demenz-Erkrankungen.

Weitere wissenschaftliche Veröffentlichungen: 1. Helmer C. et al.: Association between antioxidant nutritional indicators and the incidence of dementia: results from the PAQUID prospective cohort study. European Journal of Clinical Nutrition, 57: 1555-1561 (2003). 2. Morcos, M. et al.: Effect of alpha-lipoic acid on the progression of endothelial celldamage and albuminuria in patients with diabetes mellitus: anxxploratory study (2002). 3. Nagamatsu M. et al: Lipoic acid improves nerve blood flow, reduces oxidative stress, and improves distal nerve conduction in experimental diabetic neuropathy. Diabetes Care 18:1160-1167 (1995).  4. Packer L. und Dr. C. Colman: The Antioxidant Miracle. New York, (1999). 5. Ziegler D. et al.: Treatment of symptomatic diabetic polyneuropathy with the antioxidant Alpha-lipoic acid: a meta analysis. Diabetic Medicine, 20 (2003). 6. Schmidt E., Schmidt N.: Leitfaden Mikronährstoffe. Orthomolekulare Prävention und Therapie, S. 226-227 (2004). 7. Smitthies J.: Neue Erkenntnisse über oxidativen Stress sowie die prophylaktische und therapeutische Anwendung von Antioxidantien. Journal für Orthomolekulare Medizin 6 (3), S.223-236 (1998).

Cholin

Vorreiter von nervenaktivem Acetylcholin

Übertragung von Nervenimpulsen: Cholin wird im Gehirn und in den peripheren Zellen des Nervensystems zum Neurotransmitter (Hirnbotenstoff) Acetylcholin umgewandelt. Acetylcholin ist einer der  wichtigsten Botenstoffe für die Reizübertragung, also die Weiterleitung von Nervenimpulsen. Eine wesentliche Rolle hat Acetylcholin damit für die Gedächtnisleistung sowie alle anderen kognitiven Vorgänge wie Konzentrations-, Lern- und Wahrnehmungsprozesse. Zudem hat Cholin resp. Acetylcholin eine Stress abbauende Wirkung. Die Ergebnisse klinischer Studien zeigen, dass Cholin auch eine zentrale Bedeutung bei der Hirn- und Gedächtnisentwicklung des Embryos in der Schwangerschaft zukommt. Erhöhte Cholingaben während dieser Zeit gehen demnach mit einer Erhöhung der geistigen Funktionsfähigkeit des Kindes einher. Andere Untersuchungen zeigen, dass dem altersbedingten Verlust des geistigen Leistungsvermögens durch eine gezielt erhöhte Cholinzufuhr signifikant entgegen gesteuert werden kann.

Weitere wissenschaftliche Veröffentlichungen: 1. Alvarez X. et al.: Double-blind placebo-controlled study with citicoline in APOE genotyped Alzheimer’s disease patients. Effects on cognitive performance, brain bioelectrical activity and cerebral perfusion. Methods Find Exp Clin Pharmacol. 21:633-644 (1999). 2. Bierer, L.M. et al.: Neurochemical of dementia severity in Alzheimer´s disease relative importance of cholinergic deficits. J. Neurochem. 64 749 (1995). 3. Cohen, B.M. et al.: Decreased brain choline uptake in older adults. JAMA 274 902 (1995). 4. Crowdon, J.H.: Use of phosphatidylcholine in brain diseases: An overview. In: Hanin, I., Ansell, G.B. rapeutic Aspects. Plenum Press, New York (1999). 5. Cohen B. et al.: Lecithin in the treatment of mania: double-blind, placebo-controlled trials. Am J Psychiatry. 139:1162-1164 (1982). 6. Cacabelos R. et al.: Effect of CDP-choline on cognition and immune function in Alzheimer’s disease and multi-infarct dementia. Ann N Y Acad Sci. 695:321-323 (1993). 7. De Jesus Moreno Moreno M.: Cognitive improvement in mild to moderate Alzheimer’s dementia after treatment with the acetylcholine precursor choline alfoscerate: A multicenter, double-blind, randomized, placebo-controlled trial. Clin Ther. 25:178-193 (2003). 8. Stoll A. et al.: Choline in the treatment of rapid-cycling bipolar disorder: clinical and neurochemical findings in lithium-treated patients. Biol Psychiatry. 40:382-38 (1996).

Cobalamin (Vitamin B12)

Nervenvitamin hält das Gehirn agil

Umhüllung der Nervenfasern: Vitamin B12 ermöglicht die Bildung der schützenden so genannten Myelin-Hülle der Nervenzellen und nimmt damit eine Schlüsselrolle im Nervensystem ein. Myelin ist eine weiße isolierende Schutzschicht, die die Nervenfortsätze der Gehirn- und peripheren Nervenzellen umgibt. Die Myelinscheiden (auch Markscheiden, Schwannsche Scheiden) sorgen für eine optimale Weiterleitung nervlicher Impulse und sind unentbehrlich für die kognitive Leistungsfähigkeit wie dem Konzentrations- und Gedächtnisvermögen aber auch der Stimmungsregulierung und der Regeneration der Nervenzellen. Der behandlungsergänzende (komplementäre) Einsatz von Cobalamin hat sich bei verschiedenen neurologischen Erkrankungen als erfolgreich erwiesen. Ein Vitamin B12-Mangel äußert sich in teilweise irreversiblen neurologischen oder psychiatrischen Beschwerden wie Gedächtnisschwäche, verminderte mentale Kraft, Antriebslosigkeit, Schlafstörungen und anderen Störungen im zentralen Nervensystem.

Weitere wissenschaftliche Veröffentlichungen: 1. Bell D.S.: Metformin-induced vitamin B12 deficiency presenting as a peripheral neuropathy. South Med J, 103(3), 265-7(2010). 2. Goldberg TH.: Oral vitamin B12 supplementation for elderly patients with B12 deficiency. J Am Geriatr Soc 43:SA73 (1995). 3. Kumar S.: Vitamin B12 deficiency presenting with an acute reversible extrapyramidal syndrome. Neurol India 52: 507–9(2004). 4. Lindenbaum J. et al.: Neuropsychiatric disorders caused by cobalamin deficiency in the absence of anemia or macrocytosis. N Engl J Med 318:1720–8 (1988). 5. Penninx B. et al.: Vitamin B(12) deficiency and depression in physically disabled older women: epidemiologic evidence from the Women’s Health and Aging Study. Am J Psychiatry 157:715–21 (2000). 6. Snowden JA, Chan-Lam D, Thomas SE, Ng JP.: Oral or parenteral therapy for vitamin B12 deficiency. Lancet 353:411 (1999). 7. Shemesh Z, Attias J, Ornan M, et al. : Vitamin B12 deficiency in patients with chronic-tinnitus and noise-induced hearing loss. Am J Otolaryngol 14:94–9 (1993).

Folsäure

Grundlegend für Zellbildung und gesunde Homocysteinwerte

Ermöglicht die Zellentstehung: Das wasserlösliche B-Vitamin Folsäure nimmt eine essentielle Schlüsselfunktion in allen Prozessen der Zellneubildung und Zellteilung ein. Zellarten mit besonders hoher Teilungsrate wie Schleimhaut-, Darm-, Lungen- und Blutzellen wie Erythrozyten (rote Blutkörperchen) sind daher im Besonderen auf eine ausreichende Folatzufuhr angewiesen. Zudem ist das B-Vitamin unentbehrlich für die Entwicklung des Nervensystems des Embryos. Ein Unterversorgung mit Folsäure vor Beginn sowie im ersten Drittel der Schwangerschaft hat angeborene irreversible Fehlbildungen des Fötus mit schwersten neurologischen (geistigen und physischen) Störungen zur Folge.

Homocysteinabbau: Folsäure wird zudem gemeinsam mit Vitamin B6 und B12 zur Umwandlung und damit Entgiftung der schädlichen Aminosäure Homocystein benötigt. Das Zwischenprodukt des Eiweißstoffwechsels Homocystein übt eine (mit Cholesterin vergleichbar) schädigende Wirkung auf die Blutgefäße aus. Indem es zur Einlagerung von Fetten in die Gefäßwände und so zum Verlust der Gefäßelastizität führt, initiiert es gefährliche arteriosklerotische Prozesse. Ein erhöhter Homocysteinspiegel stellt damit einen der wesentlichen Risikofaktoren für Gefäßschädigungen und kardiovaskuläre Erkrankungen dar.

Weitere wissenschaftliche Veröffentlichungen: 1.Persad, V.L. et al.: Incidence of open neural tube defects in Nova Scotia after folid acid fortification. CMAJ 167 241-245 (2002). 2. Milunsky A. et al.: Multivitamin/folic acid supplementation in early pregnancy reduces the prevalence of neural tube defects. JAMA 1989;262:2847-2852 (1989). 3. Smithells R.: Vitamin deficiencies and neural tube defects. Arch Dis Chil 51:944-950 (1976). 4. Laurence K. et al.: Double-blind randomized controlled trial of folate treatment before conception to prevent recurrence of neural tube defects. Br Med. (1981). 5. Kane M. et al.: The interrelationship of the soluble and membrane-associated folate-binding proteins in human KB Cells. J Biol Chem 261:15625–15631 (1986). 6. Prasad P. et al.: Selective expression of the high-affinity isoform of the folate receptor (FR-Alpha) in the human placental cells. Biochim Biophys Acta 4;1223:71–75 (1994). 7. Jardine, M. et al.:  The effect of folic acid based homocysteine lowering on cardiovascular events in people with kidney disease: systematic review and meta-analysis. BMJ (Clinical research ed.) 344: e3533. 8. Sato Y. et al.: Effect of folate and mecobalamin on hip fractures in patients with stroke: a randomized controlled trial. JAMA 293 (9): 1082–8 (2005).

Inositol

Brainfood stärkt Gehirnleistung, Gedächtnis- und Lernvermögen

Bestandteil der Zellmembran: Das Vitaminoid Inositol ist gemeinsam mit Cholin für die Bildung so genannter Phospholipide sowie des Nervenstoffs Lecithin verantwortlich. Es bildet damit einen unentbehrlichen Baustein der Zellmembran (Zellwand) und ermöglicht alle wichtigen Nerven- und Gehirnfunktionen.

Aktiviert Nervenfunktionen: Die Übermittlung von Nervenimpulsen im Gehirn und Nervensystem wird unmittelbar von Inositol bestimmt, das sich in der Zellmembran der Neuronen befindet. Inositol und Cholin aktivieren und steuern die Bildung wichtiger Nervenbotenstoffe wie Serotonin und Acetylcholin. Sie ermöglichen damit die Signalübertragung zwischen den Gehirnzellen, so dass Nervenreize optimal übermittelt werden können. Inositol hat sich in Kombination mit Cholin insbesondere zur Verbesserung der Konzentrations-, Gedächtnis- und Wahrnehmungsfähigkeit bei Altersvergesslichkeit und Konzentrationsschwäche in der zweiten Lebenshälfte bewährt. Aufgrund seiner Bedeutung im Neurotransmitterstoffwechsel wird Inositol darüber hinaus in der komplementären Behandlung bei einer Vielzahl an psycho-neurologischen Störungen wie Depression, Alzheimer-Erkrankung, Panik-, Angst- und Zwangsstörungen sowie Neurosen eingesetzt.

Weitere wissenschaftliche Veröffentlichungen: 1. Benjamin J. et al.: Inositol treatment in psychiatry. Psychopharmacol Bull. 1995;31:167-175. 2. Benjamin J. et al.: Double-blind, placebo-controlled, crossover trial of inositol treatment for panic disorder. Am J Psychiatry. 1995;152:1084-1086. 3. Bierer, L.M. et al.: Neurochemical of dementia severity in Alzheimer´s disease relative importance of cholinergic deficits. J. Neurochem. 64 (1995) 749. 4. Chanty, D. et al.: Lecithin and cholin in human health and disease. Nutr. Rev. 52 (1994) 327. 5. Chengappa K. et al.: Inositol as an add-on treatment for bipolar depression. Bipolar Disord. 2000;2:47-55. 6. Fux M. et al.: Inositol treatment of obsessive-compulsive disorder. Am J Psychiatry. 1996;153:1219-1221. 7. Gregersen G. et al.: Oral supplementation of myoinositol: effects on peripheral nerve function in human diabetics and on the concentration in plasma, erythrocytes, urine and muscle tissue in human diabetics and normals. Acta Neurol Scand. 1983;67:164-172. 8. Levine J. et al.: Follow-up and relapse analysis of an inositol study of depression. Isr J Psychiatry Relat Sci. 1995;32:14-21.

L-Phenylalanin

Signalvermittler im Nervensystem, für geistige Beweglichkeit und Nervenstabilität

Bildung von Nervenbotenstoffen: Die essentielle Aminosäure Phenylalanin ermöglicht die körpereigene Synthese der Neurotransmitter Dopamin, Noradrenalin, Adrenalin, Serotonin und Tyramin, für die Reizübermittlung zwischen den Nervenzellen unentbehrliche Signalstoffe. Über seine Rolle im Neurotransmitter-Stoffwechsel steigert Phenylalanin die geistige Wachheit und kognitive Hirnfunktionen wie Konzentrations- und Gedächtnisvermögen und hat stimmungsaufhellende und nervenstabilisierende Wirkungen. Da es den Abbau körpereigener Endorphine (natürlich schmerzhemmende Peptide im Gehirn) verhindert, findet Phenylalanin  Anwendung bei chronischen Schmerzen. Das aus Phenylalanin gebildete Dopamin reduziert Appetit- und Heißhungerempfinden und fördert die Gewichtsreduktion.

Therapeutischer Einsatz bei Depression, Demenz und Parkinsonscher Krankheit: Über die Erhöhung des Noradrenalin- und Adrenalin-Spiegels wirkt Phenylalanin stimmungsverbessernd und angstmindernd bei chronisch Depressiven. Betroffene der Alzheimer-Demenz sowie Morbus Parkinson weisen einen Dopamin-Mangel auf. Phenylalanin erhöht den Dopamin-Spiegel und kann die Symptome signifikant lindern. Weitere Einsatzbereiche sind Multiple Sklerose, Vitiligo, Prämenstruelles Syndrom (PMS), Erschöpfungszustände sowie akuter/chronischer Stress (Infektionen, Traumata).

Weitere wissenschaftliche Veröffentlichungen: 1. Gardos G. et al.: The acute effects of a loading dose of phenylalanine in unipolar depressed patients with and without tardive dyskinesia. Neuropsychopharmacology. 6:241-247 (1992). 2. Heller B.: Pharmacological and clinical effects of D-phenylalanine in depression and Parkinsons disease. In: Mosnaim AD, Wolf ME,eds. Noncatecholic Phenylethylamines. Part 1. New York, NY: Marcel Dekker; 397-417 (1978). 3. Heller B. et al.: Therapeutic action of D-phenylalanine in Parkinson’s disease. Arzneimittelforschung. 26:577-579 (1976). 4. Kravitz H. et al.: Dietary supplements of phenylalanine and other amino acid precursors of brain neuroamines in the treatment of depressive disorders. J Am Osteopathic Assoc. 84(suppl):119-123 (1984). 5. Sabelli H. et al.: Clinical studies on the phenylethylamine hypothesis of affective disorder: urine and blood phenylacetic acid and phenylalanine dietary supplements. J Clin Psychiatry. 47:66-70 (1986). 6. Beckmann H. et al.: DL-phenylalanine versus imipramine: a double-blind controlled study. Arch Psychiat Nervenkr. 227:49-58 (1979). 7. Woodward W. et al.: The effect of L-dopa infusions with and without phenylalanine challenges in parkinsonian patients: Plasma and ventricular CSF L-dopa levels and clinical responses. Neurol. 43:1704-1708 (1993). 8. Wood D. et al.: Treatment of attention deficit disorder with DL-phenylalanine. Psychiatry Res.16:21-26 (1985).

L-Tyrosin

Aktiviert das Nervensystem, erhöht Antrieb und Energievermögen

Botenstoffe für Nervenstärke und Stimmungsaufhellung: Die Aminosäure L-Tyrosin erfüllt neben ihrer („proteinogenen“ = proteinbildenden) Rolle am Eiweißaufbau eine wesentliche Funktion im Zentralnervensystem. Tyrosin ist als Vorläuferstoff für die Synthese der Neurotransmitter (Botenstoffe des Nervensystems) Dopamin, Adrenalin, Tyramin und Noradrenalin im Gehirn zentral wichtig. Damit ist der Mikronährstoff an der Stimulation und Regulation der Gehirnaktivitäten beteiligt und hat eine aktivierende und leistungssteigernde Wirksamkeit. Insbesondere die Botenstoffe Adrenalin und Noradrenalin weisen stimmungsaufhellende Effekte auf, steigern Wachheit, Leistungsvermögen und Stressresistenz und vermindern Erschöpfungs- und depressive Stimmungstiefs. Dopamin, Adrenalin und Noradrenalin steuern auch die Energieversorgung und die Durchblutung von Gehirn und Organen (sympathisches Nervensystem).

Tyrosin wird als sanftes Antidepressivum, milder Appetithemmer sowie unterstützend bei Entzugstherapien  (z.B. bei Amphetaminen) eingesetzt. Weitere medizinische Anwendungsgebiete stellen Störungen des Neurotransmitterstoffwechsels, Burnout-Syndrom, Gedächtnisstörungen, Aufmerksamkeits-Defizit-Syndrom (ADS), Störungen des Wach-/Schlafrhythmus, Prämenstruelles Syndrom (PMS), Schilddrüsenerkrankungen (Hypothyreose) sowie degenerative Nervenerkrankungen wie Parkinsonsche Erkrankung und Alzheimer-Demenz dar.

Weitere wissenschaftliche Veröffentlichungen: 1. Bernheimer H. et al.: Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci 20:415-455 (1973). 2. Banderet L. et al.: Treatment with tyrosine, a neurotransmitter precursor, reduces environmental stress in humans. Brain Res Bull. 22:759-762 (1989). 3. Bickel H. et al.: The influence of phenylalanine intake on the chemistry and behaviour of a phenylketonuric child. Acta Paediatr 43:64–77 (1954). 4. Eisenberg M. et al.: Effect of tyrosine on attention deficit disorder with hyperactivity. J Clin Psychiatry. 49:193-195 (1988). 5. Gibson C.: Tyrosine for the treatment of depression. Adv Biol Psychiatry. 10:148-159 (1983). 6. Neri D. et al: The effects of tyrosine on cognitive performance during extended wakefulness. Aviat Space Environ Med 66(4):313-319 (1995). 7. Melamed E. et al.: Plasma tyrosine in normal humans: effects of oral tyrosine and protein-containing meals. J Neural Transm 47:299-306 (1980). 8. Schwahn D. et al.: Tyrosine levels regulate the melanogenic response to alphamelanocyte-stimulating hormone in human melanocytes: implications for pigmentation and proliferation. Pigment Cell Res 14:32-39 (2001).

NADH – Coenzym 1

Natürliche Quelle für Zellenergie, geistige Frische und Wachheit

Energiemobilisierung in jeder Zelle: NADH, unter Zellbiologen Nicotinamid-Adenin-Dinukleotid-Hydrid, ist ein in jeder menschlichen Körperzelle vorhandenes Molekül. Das so genannte Coenzym 1 ist für die Entwicklung und Energiebildung der Zelle sowie für mehr als 100 biologische Reaktionen lebensnotwendig. Eine Hauptfunktion des Coenzyms ist die Energieübertragung in den energiebildenden Prozessen der Zelle, die sich über den Elektronentransport von energiereichem Wasserstoff (Hydrogenium), der bei Stoffwechselprozessen frei wird, vollzieht. NADH steigert so das verfügbare Energielevel des Körpers mit einem deutlich spürbaren Anstieg von Wachheit, Energie-, Konzentrations- Wahrnehmungs- und Leistungsvermögen. NADH-Mangel geht mit geistigen und körperlichen Erschöpfungszuständen und Müdigkeit einher, die Kraftreserven werden direkt aufgezehrt.

Förderung der Gehirnfunktionen: NADH stimuliert zudem die Bildung der wichtigen Überträgerstoffe im Nervensystem, der Neurotransmitter Serotonin, Dopamin und Adrenalin. Diese Botenstoffe ermöglichen die Informationsweiterleitung zwischen den Neuronen (Nervenzellen) und bestimmen maßgeblich unsere Denk- und Gedächtnisfähigkeit, mentale Stimmungslage sowie den Schlaf-/Wachrhythmus und die Schlafqualität. Weitere wichtige Funktionen von NADH sind die Regeneration von Zell-DNA-Schäden sowie antioxidative und immunaktive Abwehrstärkung. Der Einsatz von NADH hat sich in der Behandlung von Depression, dem chronischen Müdigkeitssyndrom (CFS), Lebererkrankungen, Immunschwäche sowie bei Erschöpfungszuständen, Jetlags sowie Nerven- und Demenzerkrankungen (Störungen des Neurotransmitter-Stoffwechsels) bewährt.

Weitere wissenschaftliche Veröffentlichungen: 1. Birkmayer G. et al.: Stimulation of endogenous L-dopa biosynthesis – a new principle for the therapy of Parkinson’s disease. Acta Neurol Scand, Suppl 126:183-7 (1989). 2. Birkmayer J.: Coenzyme nicotinamide adenine dinucleotide: new therapeutic approach for improving dementia of the Alzheimer type. Ann Clin Lab Sci 26:1-9 (1996). 3. Forsyth LM, Preuss HG, MacDowell et al.: Therapeutic effects of oral NADH on the symptoms of patients with chronic fatigue syndrome. Ann Allergy Asthma Immunol 82:185-191 (1999). 4. Swerdlow H.: Is NADH effective in the treatment of Parkinson’s disease? Drugs Aging 13:263-8 (1998). 5. Cornell University (New York): doppelblinde, placebokontrollierte Studie: NADH: Improved Aspects of Cognitive Performance Following Sleep Deprivation. 6. University of California/San Diego & Washington Neuropsychological Institute: Studienergebnis: NADH verbessert die durch Jetlag reduzierte Hirnleistung. 7. Zubenko G.: Endoplasimic reticulum abnormality in Alzheimer’s disease: selectie alteration in platelet NADH-cytochrome c reductase activity. J Geriatr Psychiatry Neurol 2:3-10 (1989). 8. Zubenko G. et al.: Brain regional analysis of NADH-cytochrome C reductase activity in Alzheimer’s disase. J Neuropathol Exp Neurol 49:206-14 (1990).

Pyridoxin – Vitamin B6

Für ein intaktes Nervensystem und erholsamen Schlaf-Wach-Rhythmus

Kurbelt die Neurotransmitter-Bildung an: Vitamin B6 (Pyridoxin) ist maßgeblich an der Synthese der Botenstoffe des Nervensystems (Neurotransmitter) wie Serotonin, Dopamin und Noradrenalin beteiligt. Nervenbotenstoffe ermöglichen die Kommunikation und Reizübertragung zwischen den Nervenzellen und stellen das Funktionieren aller kognitiven und nervalen Prozesse sicher. Die „Glückshormone“ Serotonin und Dopamin sind grundlegend für die Steuerung der mentalen Befindlichkeit verantwortlich. Der Einsatz von Vitamin B6 hat sich in der Behandlung verschiedenster psychisch und neurologisch bedingter Störungen wie Depression, Burnout-Syndrom, Angstzustände, ADHS, Parkinsonsche Erkrankung, Alzheimer-Demenz und Fibromyalgie bewährt.

Regulierung des Schlaf-Wach-Rhythmus: Pyridoxin ist über die Bildung des Hormons Melatonin zudem für einen funktionierenden Schlaf-Wach-Rhythmus verantwortlich. Das so genannte „Schlafhormon“ Melatonin wird von der Zirbeldrüse im Gehirn (Epiphyse) aus Serotonin gebildet und wirkt natürlich schlaffördernd bei Einschlaf- und Durchschlafstörungen. Darüber hinaus wird Vitamin B6 gezielt bei Herz-Kreislauf-Erkrankungen, Diabetes mellitus, dem Prämenstruellen Syndrom (PMS), Anämie, entzündlichen Gelenkerkrankungen, Karpaltunnelsyndrom, Immunschwäche und Entzündungen der Mundschleimhaut eingesetzt.

Weitere wissenschaftliche Veröffentlichungen: 1. Bell I. et al.: Brief communication: Vitamin B1, B2, and B6 augmentation of tricyclic antidepressant treatment in geriatric depression with cognitive dysfunction. J Am Coll Nutr. 1992;11(2):159-163. 2. Brush M. et al.: Pyridoxine in the treatment of premenstrual syndrome: a retrospective survey in 630 patients. Br J Clin Pract. 1998;42:448–452. 4. Diegoli M. et al.: A double-blind trial of four medications to treat severe premenstrual syndrome. Int J Gynaecol Obstet. 1998;62:63–67. 3. Kidd P.: Attention deficit / hyperactivity disorder (ADHD) in children: rationale for its integrative management. Altern Med Rev. 2000;5(5):402-428. 4. Shor-Posner G.: Impact of vitamin B6 status on psychological distress in a longitudinal study of HIV-1 infection. Int J Psychiatry Med. 1994;24(3):209-222. 5. Findling R. et al.: High-dose pyridoxine and magnesium administration in children with autistic disorder: an absence of salutary effects in a double-blind, placebo-controlled study. J Autism Dev Disord 1997;27(4):467-478. 6. Lerner V. et al.: Vitamin B6 treatment in acute neuroleptic-induced akathisia: a randomized, double-blind, placebo-controlled study. J Clin Psychiatry 2004;65(11):1550-1554. 7. Miodownik C.: Vitamin B6 versus mianserin and placebo in acute neuroleptic-induced akathisia: a randomized, double-blind, controlled study. Clin Neuropharmacol 2006 Mar-Apr;29(2):68-72. 8. Miodownik C. et al.: High-dose vitamin B6 decreases homocysteine serum levels in patients with schizophrenia and schizoaffective disorders: a preliminary study. Clin Neuropharmacol 2007 Jan-Feb;30(1):13-7. 9. Nye C. et al.: Combined vitamin B6-magnesium treatment in autism spectrum disorder. Cochrane Database Syst Rev. 2005 Oct 19;(4):CD003497.

Vitamin B-Komplex

Schutzengel im Nervensystem

Unentbehrliche Universalhelfer: Acht wasserlösliche Vitamine bilden den für den Menschen unentbehrlichen Vitamin B-Komplex. Obwohl die B-Vitamine unterschiedlichste Aufgaben im Organismus erfüllen, besitzen alle eine unersetzliche Funktion als integraler Bestandteil von Co-Enzymen. Die wichtigsten Einsatzgebiete der B-Vitamine stellen daher die Verstoffwechslung von Kohlenhydraten, Fetten und Eiweißen sowie das Nervensystem dar. Letzteres hat ihnen auch die Bezeichnung „Nervenvitamine“ (Neurotrope Vitamine) eingebracht. Weiterer wichtiger Aufgabenbereich stellt die Gesunderhaltung und Erneuerung von Haut und Haaren dar.

Isolierter Mangel selten: Die B-Vitamine weisen alle sehr unterschiedliche biologische Strukturen auf, besitzen jedoch eng miteinander verbundene Stoffwechselwege. Aus diesem Grund findet ein Vitamin-B-Mangel selten isoliert statt, sondern fast immer als genereller Mangel aller acht B-Vitamine. Die Versorgungssituation für den Komplex der B-Vitamine gilt in Deutschland, Österreich und der Schweiz für Frauen und Männer in fast allen Altersgruppen als nicht ausreichend.

Der Vitamin B-Komplex setzt sich zusammen aus:

  • Thiamin (Vitamin B1)
  • Riboflavin (Vitamin B2)
  • Niacin (Vitamin B3)
  • Pantothensäure (Vitamin B5)
  • Pyridoxin (Vitamin B6)
  • Biotin (Vitamin B7)
  • Folsäure (Vitamin B9)
  • Cobalamin (Vitamin B12)
Weitere wissenschaftliche Veröffentlichungen: 1. Bundesinstitut für Risikobewertung: Domke A., Großklaus R., Niemann B., Przyrembel H., Richter K., Schmidt E., Weißenborn A., Wörner B., Ziegenhagen R. (Hrsg.): Verwendung von Vitaminen in Lebensmitteln – Toxikologische und ernährungsphysiologische Aspekte Teil 1. 119-151, 169-184 BfR-Hausdruckerei Dahlem (2004). 2. Cook, C. et al.: B-complex vitamins in the prophylaxis and treatment of Wernicke-Korsakoff Syndrome, British Journal of Clinical Practice 57(9):401-465, (1997). 3. Food and Nutrition Board, Institute of Medicine. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. Washington, DC: National Academy Press (1998). 4. Kabat G.et al.: Dietary intake of selected B vitamins in relation to risk of major cancers in women. Br J Cancer. 99(5):816-21 (2008). 5. Kushi L. et al.: American Cancer Society Nutrition and Physical Activity Guidelines Advisory Committee (2006). American Cancer Society guidelines on Nutrition and Physical Activity for cancer prevention: reducing the risk of cancer with healthy food choices and physical activity. CA Cancer J Clin. 56:254-281 (2006). 6. Lin J. et al.: Plasma folate, vitamin B-6, vitamin B-12, and risk of breast cancer in women. Am J Clin Nutr. 87(3):734-43 (2008). 7. Wu K. et al.: A prospective study on folate, B12, and pyridoxal 5’-phosphate (B6) and breast cancer. Cancer Epidemiol Biomarkers Prev. 8:209-217 (1999). 8. Zhang S. et al.: Effect of Combined Folic Acid, Vitamin B6, and Vitamin B12 on Cancer Risk in Women: A Randomized Trial. JAMA 300(17) (2008).