Willkommen bei VitaminWiki

Acetyl-L-Carnitin

Bild: Acetyl-L-Carnitin im Nervensystem
Acetyl-L-Carnitin verbessert die Reizweiterleitung der Nervenzellen im Gehirn (VitaminWiki)

Erhöht die Energiegewinnung und unterstützt das Nervensystem

Anhebung des Energiestoffwechsels: Der körpereigene Stoff Acetyl-L-Carnitin erhöht die Energiebildung in den so genannten Mitochondrien, den Energie bildenden „Kraftwerken“ der Zellen. Acetyl-L-Carnitin (ACL) sorgt dafür, dass den Zellen ausreichend Energie für alle Zellfunktionen zur Verfügung steht. Besonders relevant ist dies für Zellsysteme des Gehirns, des Nervensystems sowie des Herzmuskels. Der gesteigerte Energiestoffwechsel der Nervenzellen wirkt dabei altersbedingten Abbauprozessen der Zellen entgegen und fördert die geistige Leistungsfähigkeit wie das Gedächtnis- und Konzentrationsvermögen bis ins hohe Alter.

Verbesserung der Nervenfunktionen: Acetyl-L-Carnitin steigert die Erregbarkeit („Rezeptorsensibilität“) der Nerven für die Botenstoffe Serotonin und Acetylcholin (Neurotransmitter) und vermindert damit die mit Alterungsprozessen stattfindende Desensibilisierung der Nervenrezeptoren. Hierdurch werden die Prozesse der Degeneration, dem Funktionsverlust der Zellen, gehemmt. Acetyl-L-Carnitin wirkt sich über diesen Mechanismus positiv auf die Entstehung und das Fortschreiten neurodegenerativer Erkrankungen wie der diabetischen Neuropathie, der Altersdepression oder der Alzheimer-Erkrankung aus.

Weitere wissenschaftliche Veröffentlichungen: 1. Bonavita E.: Study of the efficacy and tolerability of L-acetyl-carnitine therapy in the senile brain; Int J Clin Pharmacol Ther Toxicol 24.9 (1986). 2. Marconi C. et al.: Effects of L-carnitine loading on the aerobic and anaerobic performance of endurance athletes; Europ. J. Appl. Physiol. 54, 131-135 (1985). 3. Spagnoli A. et al.: Acetyl-L-carnitine treatment in alzheimer`s disease, Neurology; 41.11 (1991). 4. Wilson A. et al.: Delayed acetyl-L-carnitine administration and its effect on sensory neuronal rescue after peripheral nerve injury. Journal of Plastic Reconstructive & Aesthetic Surgery 60 (2): 114– (2007). 5. Samir P. et al.: Acetyl-l-carnitine ameliorates mitochondrial dysfunction following contusion spinal cord injury. Journal of Neurochemistry 114 (1): 291–301 (2010). 6. Beal M.: Bioenergetic approaches for neuroprotection in Parkinson’s disease. Annals of Neurology 53 (Suppl 3): S39–47; discussion S47–8 (2003).

Alpha-Liponsäure

Starker Antioxidant und Schutzengel im Nervensystem

Multi-Antioxidant: Die Alpha-Liponsäure zählt zu den wirksamsten Antioxidantien im menschlichen Organismus. Die Besonderheit: Ihre Struktur erlaubt es der Alpha-Liponsäure, sowohl in fettlöslichen Zellmembranen als auch den wasserlöslichen Geweben antioxidativ wirksam zu sein und so Zellwände und Zellorganellen (Funktionseinheiten) vor freien Radikalen zu schützen. Darüber hinaus ist die Alpha-Liponsäure in der Lage, andere Antioxidantien wie Vitamin E, Glutathion und Vitamin C zu regenerieren und damit die antioxidative Gesamtwirkung zu verstärken.

Nervenschutzstoff: Die Alpha-Liponsäure wirkt neuroprotektiv (Nerven schützend). Sie erhöht die Nervenleitgeschwindigkeit und verbessert die Blutzirkulation der Nervenzellen und deren Versorgung mit Sauerstoff und Nährstoffen. Gute Erfolge werden mit der Alpha-Liponsäure daher in der Regel bei allen Erkrankungen erzielt, die mit Nervenschädigungen einhergehen, wie z. B. den diabetischen Polyneuropathien oder Demenz-Erkrankungen.

Weitere wissenschaftliche Veröffentlichungen: 1. Helmer C. et al.: Association between antioxidant nutritional indicators and the incidence of dementia: results from the PAQUID prospective cohort study. European Journal of Clinical Nutrition, 57: 1555-1561 (2003). 2. Morcos, M. et al.: Effect of alpha-lipoic acid on the progression of endothelial celldamage and albuminuria in patients with diabetes mellitus: anxxploratory study (2002). 3. Nagamatsu M. et al: Lipoic acid improves nerve blood flow, reduces oxidative stress, and improves distal nerve conduction in experimental diabetic neuropathy. Diabetes Care 18:1160-1167 (1995).  4. Packer L. und Dr. C. Colman: The Antioxidant Miracle. New York, (1999). 5. Ziegler D. et al.: Treatment of symptomatic diabetic polyneuropathy with the antioxidant Alpha-lipoic acid: a meta analysis. Diabetic Medicine, 20 (2003). 6. Schmidt E., Schmidt N.: Leitfaden Mikronährstoffe. Orthomolekulare Prävention und Therapie, S. 226-227 (2004). 7. Smitthies J.: Neue Erkenntnisse über oxidativen Stress sowie die prophylaktische und therapeutische Anwendung von Antioxidantien. Journal für Orthomolekulare Medizin 6 (3), S.223-236 (1998).

Krill-Öl

KrillMaritimer Schutz von Herz und Arterien

Herz- und Gefäß-Prophylaxe: Das Öl des Kleinkrebses Krill (Euphausia superba) dient aufgrund seines besonders zuträglichen Fettsäuremusters zur Primär- und Sekundärprävention sowie adjudanten (begleitenden)  Therapie  von Herz- und kardiovaskulären Erkrankungen. Nahezu ein Drittel der in Krill-Öl gespeicherten Fettsäuren nehmen die Omega-3-Fettsäuren EPA (Eicosapentaensäure) und DHA (Docosahexaensäure) ein, denen in über 9.000 klinischen Studien kardioprotektive Wirkungen nachgewiesen wurden. So reduziert eine hohe Zufuhr dieser Fettsäuren das Risiko für Herz- und Gefäßerkrankungen signifikant, unter anderem durch die Senkung erhöhter Blutfett-, Cholesterin- und Blutdruckwerte. Zudem wird die Blutfließfähigkeit verbessert, das Risiko für Blutgerinnselbildung reduziert und Entzündungsprozessen des Gefäßendothels sowie der Entstehung arteriosklerotischer Gefäßablagerungen (Plaques) entgegen gesteuert. Eine der positiven Nebenwirkungen ist daher der blutverdünnende Effekt beim Verzehr von Krill-Öl Kapseln.

Verbund mit Zellschutz-Carotinoid Astaxanthin: Der rote so genannte „Leuchtkrebs“ bietet zudem einen einzigartigen Komplex aus Fettsäuren, Phospholipiden (Baustein der Zellmembranen) und dem hoch antioxidativen Farbpigment Astaxanthin. Krill-Öl kann aufgrund dieses beispiellosen Verbundes besonders gut vom Organismus resorbiert werden. Damit ist Krill-Öl das einzige Öl, das Astaxanthin liefert – das von Wissenschaftlern als einen der stärksten Zellprotektoren eingestufte rotfarbene Carotinoid. Untersuchungen ergaben für Astaxanthin das 6.000-fache antioxidative Potential von Vitamin C und eine 50-fach stärkere antioxidative Wirksamkeit verglichen mit allen bislang bekannten Fischölen. Die in renommierten Fallstudien zu Krill-Öl belegten Wirkungen in der Prophylaxe und Therapie umfassen unter anderem: Schutzeffekte für Herz- und Gefäßsystem und Regulierung erhöhter Blutfettwerte (Cholesterin-Triglyceride). Aufgrund seiner antiinflammatorischen (entzündungreduzierenden) Wirksamkeit hat sich Krill-Öl zudem insbesondere bei chronischen, entzündlichen Erkrankungen wie den chronisch-entzündliche Gelenkerkrankungen (Arthritis, Arthrose), Hauterkrankungen (Schuppenflechte, Neurodermitis) und chronisch-entzündlichen Darmerkrankungen (Morbus Crohn, Colitis ulcerosa) bewähren können.

Weitere wissenschaftliche Veröffentlichungen: 1. Bunea R. et al.: Evaluation of the effects of Neptune Krill Oil on the clinical course of hyperlipidemia. Altern Med Rev 9(4):420-8 (2004). 2. Werner A. et al.: Treatment of EFA deficiency with dietary triglycerides or phospholipids in a murine model of extrahepatic cholestasis. Am J Physiol Gastrointest Liver Physiol.;286(5):G822-32. Epub 2003 Dec 11 (2004). 3. Sampalis T.: Evaluation of the Effect of NKO on Biomarkers of Chronic Inflammation in vivo. JSS medical research, inc. June 9, 2004. 4. Sally T. et al.: Dietary Krill Oil Supplementation Reduces Hepatic Steatosis, Glycemia, and Hypercholesterolemia in High-Fat-Fed Mice . Journal of Agricultural and Food Chemistry, 17.9. (2009). 5. Deutsch L.: Evaluation of the Effect of Neptune Krill Oil on Chronic Inflammation and Arthritic Symptoms. Journal of the American College of Nutrition, Vol. 26, No.1 (2007). 6. Duda M. et al.: Fish oil, but not flaxseed oil, decreases inflammation and prevents pressure overload-induced cardiac dysfunction. Cardiovasc Res. 1;81(2):319-27 (2009). 7. Tou J. et al.: Krill for human consumption: nutritional value and potential health benefits. Nutr Rev.;65(2):63-77 (2007).

Maitake

„Klapperschwamm“ mit hoch immunologischen, krebshemmenden Wirkungen

Stimulierung der zellulären Immunantwort: Der japanische Nahrungspilz Maitake (Grifola frondosa) wird als immunstärkender Wirkextrakt bei allen immunsuppressiven Erkrankungen und Therapien sowie in der Krebsbehandlung zunehmend  (in Asien standardisiert) eingesetzt. Physiologisch bedeutende Wirkstoffe des Klapperschwamms stellen so genannte Beta-Glucan-Polysacharide, Beta-1,3- und Beta-1,6-Glucan, dar, deren immunmodulierende, antioxidative und tumorhemmende Wirkungen wissenschaftlich belegt sind. Die Maitake-D-Fraktion stimuliert die Aktivität von T-Helfer-Zellen, Makrophagen (Fresszellen), Interleukinen und Gamma-Interferon.

Zellschutz vor Viren, Bakterien und Tumorausbreitung: In der Krebstherapie hat die Maitake-D-Fraktion hemmenden Effekt auf das Wachstum von Krebszellen und vermindert die Tumorregression (bei Leber-, Lungen-, Mamma-, Magen- und Darmkarzinom) sowie die Nebenwirkungen von Chemo- und Strahlentherapien. Darüber hinaus wirken die Inhaltsstoffe hoch antioxidativ, antibakteriell und antiviral, das heißt, sie hemmen die Ausbreitung des Virus im Wirtskörper. Durch wissenschaftliche Studien belegt sind neben den immunstimulierenden, tumorhemmenden und antioxidativen Zellwirkungen auch die Eigenschaften des Maitake zur Senkung erhöhter Blutdruck- und Blutfettwerte (Cholesterin, Triglyceride) sowie zur Verbesserung der Insulinsensibilität.

Weitere wissenschaftliche Veröffentlichungen: 1. Inoue A. et al.: Effect of Maitake (Grifola frondosa) D-Fraction on the Control of the T-Lymph Node Th-1/Th-2 Proportion; Biol. Pharm. Bull. 25(4) 536-540 (2002). 2. el-Mekkawy, S. et al.: Anti-HIV-1 and anti-HIV-1-protease substances from Ganoderma lucidum, in: Phytochemistry; vol 49(6), pp 1651-7 (1998). 3. Cunningham-Rundles S.: Are Botanical Glucans Effective in Enhancing Tumoricidal Cell Activity? American Society for Nutrition. J. Nutr. 135: 2919S (2005). 4. Hong F. et al.: Mechanism by which orally administered beta-1,3-glucans enhance the tumoricidal activity of antitumor monoclonal antibodies in murine tumor models. J Immunol. 173:797-806 (2004). 5. Kodama N. et al. Maitake D-Fraction enhances antitumor effects and reduces immunosuppression by mitomycin-C in tumor-bearing mice. Nutrition. 21:624-629 (2005). 6. Konno S.: Potential growth inhibitory effect of maitake D-fraction on canine cancer cells. Vet Ther. 5:263-271 (2004). 8. Memorial Sloan-Kettering Cancer Institute. Maitake. 2007. 7. Nanba H. Activity of maitake D-fraction to inhibit carcinogenesis and metastasis. Ann NY Acad Sci. 768:243-245 (1995). 8. Nanba H. et al.: Effect of maitake D-fraction on cancer prevention. Ann NY Acad Sci. 833:204-207 (1997).

Selen

Mineral für Zellschutz und Immunstimulation

Antioxidative Zellschutzfunktion: Selen stellt einen der wirksamsten Antioxidantien und das wichtigste Spurenelement für die körpereigene Abwehr von Zellschädigungen durch freie Radikale dar. Als Bestandteil  von Schlüsselenzymen wie der Glutathionperoxidase schützt Selen die Körperzellen und die genetische Erbsubstanz (DNA) vor aggressiven Peroxidradikalen (oxidativer Stress). Selen bremst damit Zellalterungsprozesse, verhindert den vorzeitigen Zelluntergang und senkt das Krebsrisiko signifikant. Da Selen zudem die Eigenschaften besitzt, Schwermetalle zu neutralisieren, schützt es das Zellsystem vor Schwermetallbelastung insbesondere durch Cadmium, Blei und Quecksilber.

Immunstärkung und Immunmodulation: Selen stimuliert und reguliert die humorale und zelluläre Immunabwehr. Insbesondere die Konzentrationen an T-Lymphozyten (Immunzellen) und Antikörper, sogenannte Immunglobuline (IgG), sowie des Tumor-Nekrose-Faktors (TNF) werden durch erhöhte Selengaben gesteigert. Entzündungsreaktionen wirkt Selen entgegen indem es die Bildung von entzündungsfördernden, immunschwächenden Botenstoffen, den Prostaglandinen, vermindert. Selen wird vor allem bei erhöhter Infektanfälligkeit (Immunschwäche), Krebserkrankungen aber auch allen entzündlichen Gelenk- und Hauterkrankungen sowie Herz-Kreislauf-Erkrankungen und Erkrankungen, die mit erhöhtem oxidativen Stress assoziiert sind (z. B. Diabetes mellitus) in der Prophylaxe und Therapie eingesetzt.

Weitere wissenschaftliche Veröffentlichungen: 1. McKenzie R. et al.: Selenium: an essential element for immune function. Immunol Today 1998;19:342-5. 2. Peretz A. et al.: Selenium supplementation in rheumatoid arthritis investigated in a double blind, placebo-controlled trial. Scand J Rheumatol 2001;30(4):208-212. (2001). 3. Stranges S. et al.: Effects of selenium supplementation on cardiovascular disease incidence and mortality: secondary analyses in a randomized clinical trial. Am J Epidemiol. 15;163(8):694-9. (2006). 4. Gartner R. et al.: The effect of a selenium supplementation on the outcome of patients with severe systemic inflammation, burn, and trauma. BioFactors 14 2001; 199-204. 5. Neve J.: Human selenium supplementation as assessed by changes in blood selenium concentration and glutathione peroxidase activity. J Trace Elem Med Biol 1995;9:65-73. 6. Fleet J.: Dietary selenium repletion may reduce cancer incidence in people at high risk who live in areas with low soil selenium. Nutr Rev 1997;55:277-9. 7. Grimble RF. Nutritional antioxidants and the modulation of inflammation: Theory and practice. New Horizons 1994;2:175-85. 8. Look M. et al.: Serum selenium versus lymphocyte subsets and markers of disease progression and inflammatory response in human. 10. Romero-Alvira D.: The keys of oxidative stress in acquired immune deficiency syndrome apoptosis. Medical Hypotheses 1998;51(2):169-73.

SOD

„Methusalem-Enzym“ zum Schutz vor Superoxiden

Erhöhung des antioxidativen Schutzsystems gegen degenerative Erkrankungen: Die Superoxid-Dismutase (SOD) ist das meist vorhandene und laut Zellforschern wichtigste antioxidative Enzym im menschlichen Organismus (60 µg/ml Blut). SOD ist für die Neutralisierung der so genannten Superoxide, der  am stärksten zellschädigenden freien Sauerstoffradikale überhaupt, zuständig. Superoxide zählen in der  Altersforschung zu den Hauptauslösern für Zellalterungsprozesse. SOD katalysiert die Dismutation, zu deutsch die Umwandlung der Superoxide zu unschädlichem Wasserstoffperoxid (H2O2). Der natürliche Alterungsprozess aber auch äußere Faktoren wie übermäßige UV-Strahlung, erhöhte oxidative Belastung, exzessiver Genussmittelkonsum, übermäßige körperliche Belastung, physischer und mentaler Stress sowie hohe Homocystein-Blutwerte steigern den physiologischen Bedarf an SOD um ein Vielfaches. Die medizinische Anwendung von Superoxid-Dismutase wird ab dem 40. Lebensjahr zur allgemeinen Prävention vor vorzeitiger Zellalterung (Anti-Aging-Prophylaxe) und zur Vorbeugung aller radikalinduzierten, degenerativen Erkrankungen wie Herz-Kreislauf-, Krebs- und degenerativen Gelenk- und Neuro-Erkrankungen (z.B. Demenz, Parkinson’sche Erkrankung) empfohlen.

Weitere wissenschaftliche Veröffentlichungen: 1. Corominas M. et al.: Hypersensitivity reaction after orgotein (superoxide dismutase) administration. Allergol Et Immunopathol 18(5):297-299 (1990). 2. Cudkowicz M. et al.: Intrathecal administration of recombinant human superoxide dismutase 1 in amyotrophic lateral sclerosis: a preliminary safety and pharmacokinetic study. Neurology 49:213-222 (1997). 3. Housset M. et al.: Action of liposomal superoxide dismutase on measurable radiation-induced fibrosis (article in French). Free Radic Res Commun 1(6):387-394 (1986). 4. Muizelaar J. et al.: Improving the outcome of severe head injury with the oxygen radical scavenger polyethylene glycol-conjugated superoxide dismutase: a Phase II trial. J Neurosurg 78(3):375-382 (1993). 5. Niwa Y. et al.: Effect of liposomal-encapsulated superoxide dismutase on active oxygen-related human disorders. A preliminary study. Free Radic Res Commun; 1(2):137-153 (1999). 6. Rosenfeld W. et al.: Safety and pharmacokinetics of recombinant human superoxide dismutase administered intratracheally to premature neonates with respiratory distress syndrome. Pediatrics 97(6 Pt 1):811-817 (1996). 7. Sanchiz F. et al.: Prevention of radioinduced cystitis by orgotein: a randomized study. Anticanc Res 16(4A):2025-2028. (1996).